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Many important physical problems require nu-
merical solutions of the wave equations for long
time intervals, e.g. radio, seismic and acous-
tic waves. Achieving the desired integration
times requires balancing the efficiency and ac-
curacy of the numerical scheme. The leading
sources for long time integration error are numer-
ical anisotropy and dispersion – numerical arti-
facts (absent in the physical problem) predicting
different speed of propagation for waves depend-
ing on their direction and their wavelength. These
artifacts are major challenge for existing meth-
ods, as even for moderate integration times this
requires increasing the size of the problem sig-
nificantly to resolve the smallest wavelength. We
have developed a new computational technique,
called m-adaptation, that significantly reduces the
effect of the numerical dispersion and anisotropy
for the acoustic wave equation, and may eliminate
them completely.

The m-adaptation technique is based on
Mimetic Finite Difference (MFD) discretizations
[1] that were developed in the last 15 years by
the team of M. Shashkov. One important fea-
ture that makes MFD discretizations exception-
ally flexible is that they work on general polyg-
onal and polyhedral meshes. Another feature,
unique to MFD discretizations, is that unlike clas-
sical discretizations it produces not one but a pa-
rameterized family of methods [2] with equiva-
lent properties – convergence rate, stability and
computational complexity. Many classical meth-
ods, such as Finite Difference (FD) and Finite El-
ement (FE) methods belong to this family. There
are infinitely many more methods that do not cor-
respond to any of the classical methods, but can
be optimal for the problem of interest.

For the acoustic wave equation, utt = c4u,
written in a semi-discrete form Mutt = Au, the ef-
ficiency is achieved by selecting the mass matrix
M to be diagonal. The stiffness matrix A is assem-
bled from local matrices AE element-by-element,
like in the classical FE discretizations. On each
element E the local matrix AE has a form:

AE = Acons
E +Astab

E (ζ1, . . . ,ζk).

The symmetric consistency matrix Acons
E is unique

for all second-order accurate methods. The sta-
bility matrix Astab

E is determined by the parameters
ζ1, . . . ,ζk, whose number k depends on the num-
ber of vertices in the element E. For the acous-
tic equation on squares k = 1; on cubes k = 10.
The m-adaptation allows one to find the opti-
mal parameters for a specified criteria, which for
the wave equation are minimization of numerical
anisotropy and numerical dispersion. The optimal
parameter ζopt depends on the value κh, character-
izing the resolution of the wavelength λ = 2π/κ

by the mesh of size h.

Radial slices of the numerical solutions of the
wave equation with radially symmetric (around
the origin) Gaussian initial displacement, zero
initial velocity and zero Dirichlet boundary con-
ditions. The solution obtained using FD (top) and
FE (not shown) has about 30 times wider spread
of displacement for any fixed distance ρ from the
origin as compared with solution obtained using
m-adaptation (bottom).
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A packet of plain waves moving a distance of 15 mean wavelengths at 30◦ to a square mesh. Error in L2-
norm as a function of time for FE, FD, and MFD with ζopt = 2.68, optimized for κh = 0.5. The dispersion
curves are shown (top right) for all three methods. Note a wide region, κh < 1.5, where the dispersion
curve for the optimized MFD matches almost perfectly with the physical velocity (an order of magnitude
improvement over FD and FE). This region corresponds to waves with 4 or more points per wavelength,
which is a dramatic improvement over the common practice of using at least 12-20 points per wavelength.

We performed a number of numerical experi-
ments that demonstrate at least an order of mag-
nitude reduction of error for m-adaptation com-
pared with the classical FD and FE methods.

For the minimization of numerical anisotropy,
we considered a test problem with a radially sym-
metric physical solution. Due to mesh anisotropy,
the numerical solutions produce radially asym-
metric solutions, leaving a mesh imprint on the
problem. The deviation of numerical solution
from a radially symmetric one can be measured
through the spread of values u(ρ) on circles of
radius ρ, depicted on the first page. The smaller
the spread is, the closer the solution is to a ra-
dially symmetric one, with zero spread corre-
sponding to a perfectly radially symmetric solu-
tion. The spread of the values obtained using the
m-adaptation, is a factor of 30 smaller compared
with the classical FD and FE methods, virtually

eliminating mesh imprint on the problem.
The results of comparison for the numerical

dispersion are similar, with typical reduction of
L2-error by an order of magnitude.
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